- redhat

NFV and Containers
Evolution or Revolution ?

Huawel Nov 2015
Daniel Velllard <velllard@redhat.com>

aka TXE



mailto:veillard@redhat.com

Presentation

Working at Red Hat

Since 2001, previously at W3C

RHN, Desktop, Virtualization as developer

Manager for Standards and NFV in OSAS

Manager of a tools team on Containers
Libxml2 and libxslt

Created in 98

Main author, maintainer of the libraries
Libvirt

Created in 2005, 10 year anniversary on Monday!

Main initial author

Releases maintainer



NFV revolution

Virtualize the compute nodes
Possible due to technology improvements in virt
Cheaper
Cost effectiveness of dynamic placement and scaling
More control over execution

Migration

Resource control
Most workload can be kept mostly unchanged



Virtualizing the workloads

This mostly leaves the application and their OS untouched

App 1 App 2
— 0OS 0SS

node 1 noﬁZ
0SS




Containers

First seen as a lighter way way to virtualize

Based on partitioning the resources between applications
Based on kernel support like cgroups and namespaces
Single kernel on the node

The applications run on top of the base OS but with a
limited view of the resources

Weaker inter-application protection

No support for migration in general

But very efficient:
Very lightweight
One kernel to rule them all
Achieves very high density levels



Containerizing the workload

Usually one container per process
They all share the same kernel and base OS
sSo need to be compatible

In practice most of the required libraries and helpers are
put in the container

Minimize the level of dependancy and requirement
Raises the problem of updates




Containers for NFV

ETSI NFV looking at containers
Easier to give direct hardware access
Better efficiency

Scheduling flow as steps in a pipeline has less
overhead

Density, and a single kernel
Isolation is not at the same level as with virt
SELinux and other kernel mechanisms
If a virt kernel crash it affects only one app
Single kernel and base OS means standardization



Drivers for technical evolution

A

® Container

Virtualization
Cheaper

Safer



Containers vs. Virt environments

The problem of APIs
NFV picking up OpenStack
Not an ideal support for container directly
Libvirt has a container driver but not used much
Containers have dedicated frameworks
OpenShift
Kubernetes
Mesos + marathon

Virtual workloads are not scaled up/down as simply
It's also an application problem



The 3 layers cake

e.g. OpenShift on AWS or Openshift on OpenStack
Kubernetes on OpenStack

i

Containers

Nodes




Container software model: Docker

Provide tools to provision the content of containers
Define this as the model to build and deploy applications
Make it independent of the base OS (mostly)

=> Suddenly containers become sexy



Rebuilding legacy apps

Application are usually multi-processes
Splitting the apps into multiple containers
Define APIs
Build scaling in and out using container instances
Break classic model of dependencies on a base OS
Bundle libs in the package
Container inheritance
Need support from tools on how to redefine the apps



Common use case outside of NFV

Content provider (Google, Seznam, BBC ...)

Speeding up the workflow and delivery of apps
From developper to live in hours
DevOps kind of workflow
Implementation of CI/CD workflows

Web applications

Data crunching



Certification of containers on the base OS

Contrary to virt, the OS is not part of application delivery
The 'surface of contact' between the application and OS
Is larger
Is beyond just the kernel APIs
Parts moving in the base OS can affect the container
So applications need to be 'certified' against the OS
Vendor certification e.g. Red Hat certification
In-house certification
The trend is to have minimal OS versions dedicated
Red Hat Enterprise Atomic
CoreOS



Way forward and collaboration

Look in the NFV catalog functions:
That are already service based
That do not require the protection of virt
Modify the application to be container ready
Convert them to run in one container (automatable)
Split the containers at the service boundaries
Define orchestration requirements for the app
We can help with this'!



Conclusions

In the last 2 years containers moved from evolution
Cheaper application isolation
Integration in the virtualization stack
To revolution
Define a new application format
New software delivery mechanisms

Revolution for NFV as the traditional workloads are
transitionned to the new model

This will impact future definitions of NFV standards as
done by ETSI

This will impact the OS vendor relationship

Some workloads will not change easilly, normal
virtualization will still be available

Be ready for a 3 layer cake: physical + virt + containers



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

