
NFV and Containers
Evolution or Revolution ?

Huawei Nov 2015
Daniel Veillard <veillard@redhat.com>
a.k.a. 李达尼

mailto:veillard@redhat.com


Presentation
 Working at Red Hat

● Since 2001, previously at W3C
● RHN, Desktop, Virtualization as developer
● Manager for Standards and NFV in OSAS
● Manager of a tools team on Containers

 Libxml2 and libxslt
● Created in 98
● Main author, maintainer of the libraries

 Libvirt
● Created in 2005, 10 year anniversary on Monday!
● Main initial author
● Releases maintainer



NFV revolution
 Virtualize the compute nodes
 Possible due to technology improvements in virt
 Cheaper 
 Cost effectiveness of dynamic placement and scaling
 More control over execution

● Migration
● Resource control 

 Most workload can be kept mostly unchanged



Virtualizing the workloads
 This mostly leaves the application and their OS untouched

node 1 node 2 node 3 node 4

App 1 App 2 App 3 App 4
OSOS OS OS

OS OS OS OS

OS OS



Containers
 First seen as a lighter way way to virtualize
 Based on partitioning the resources between applications
 Based on kernel support like cgroups and namespaces
 Single kernel on the node
 The applications run on top of the base OS but with a 

limited view of the resources
 Weaker inter-application protection
 No support for migration in general
 But very efficient:

● Very lightweight
● One kernel to rule them all
● Achieves very high density levels



Containerizing the workload 
 Usually one container per process
 They all share the same kernel and base OS

● so need to be compatible
 In practice most of the required libraries and helpers are 

put in the container
● Minimize the level of dependancy and requirement
● Raises the problem of updates

OS



Containers for NFV
 ETSI NFV looking at containers
 Easier to give direct hardware access
 Better efficiency

● Scheduling flow as steps in a pipeline has less 
overhead

● Density, and a single kernel
 Isolation is not at the same level as with virt

● SELinux and other kernel mechanisms
● If a virt kernel crash it affects only one app

 Single kernel and base OS means standardization



Drivers for technical evolution

Safer

Cheaper
Virtualization

Container



Containers vs. Virt environments
 The problem of APIs
 NFV picking up OpenStack

● Not an ideal support for container directly
● Libvirt has a container driver but not used much

 Containers have dedicated frameworks
● OpenShift
● Kubernetes
● Mesos + marathon
● …

 Virtual workloads are not scaled up/down as simply
 It's also an application problem



The 3 layers cake
 e.g. OpenShift on AWS or Openshift on OpenStack
 Kubernetes on OpenStack

OS OS OS OS

OS OS
Nodes

VMs

Containers



Container software model: Docker

 Provide tools to provision the content of containers
 Define this as the model to build and deploy applications
 Make it independent of the base OS (mostly)

=> Suddenly containers become sexy



Rebuilding legacy apps
 Application are usually multi-processes

● Splitting the apps into multiple containers
● Define APIs
● Build scaling in and out using container instances

 Break classic model of dependencies on a base OS
● Bundle libs in the package
● Container inheritance

 Need support from tools on how to redefine the apps



Common use case outside of NFV
 Content provider (Google, Seznam, BBC …)
 Speeding up the workflow and delivery of apps

● From developper to live in hours
● DevOps kind of workflow
● Implementation of CI/CD workflows

 Web applications
 Data crunching



Certification of containers on the base OS
 Contrary to virt, the OS is not part of application delivery
 The 'surface of contact' between the application and OS

● Is larger
● Is beyond just the kernel APIs
● Parts moving in the base OS can affect the container

 So applications need to be 'certified' against the OS
● Vendor certification e.g. Red Hat certification
● In-house certification

 The trend is to have minimal OS versions dedicated
● Red Hat Enterprise Atomic
● CoreOS
● ...



Way forward and collaboration
 Look in the NFV catalog functions:

● That are already service based
● That do not require the protection of virt

 Modify the application to be container ready
● Convert them to run in one container (automatable) 
● Split the containers at the service boundaries

 Define orchestration requirements for the app
 We can help with this !



Conclusions
 In the last 2 years containers moved from evolution

● Cheaper application isolation
● Integration in the virtualization stack

 To revolution
● Define a new application format
● New software delivery mechanisms

 Revolution for NFV as the traditional workloads are 
transitionned to the new model

 This will impact future definitions of NFV standards as 
done by ETSI

 This will impact the OS vendor relationship
 Some workloads will not change easilly, normal 

virtualization will still be available
 Be ready for a 3 layer cake: physical + virt + containers


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

