
Standards, the kernel 
and Open Source 

Daniel Veillard
veillard@redhat.com

http://veillard.com/Talks/CLKBeijing2012.pdf



Standards: why ?

Main purpose is interoperability
● Public description of the technology
● Test suite or conformance checks 

Main benefit is cheaper, ubiquitous technology
● Not tied to one vendor
● Larger user base
● Competition between vendors 



Classic example: camera/phone cable



Standards: How ?

Various standard bodies, process is usually:
1)Multiple actors
2)Agreement to make a public specification 
3)Shared work on creating that specification
4)Multiple initial versions (with feedback)
5)Vote and publication as a standard
6)Maintainance

Usually takes a few year, often painful 



Standardization groups

And many others ...



What about the Linux kernel ?

 Linux is in the C language, which is standardized !
 Linux initial success was tied to the POSIX API

● Implementing the standard gained a lot of applications
 We rely on standardized hardware

● Buses (PCI/I2C...)
● Protocols to talk to disks and other peripherals
● Boot process

 We rely on standardized networking
● From the lowest level: frame/packet level
● Up to the application: Web, Video, etc ... 



Looking more closely

Looking at the linux kernel code 3.6.1 source code
 IETF RFC standards:

● Reference 212 different RFCs in the code base (544, 
791, 792, 793, .... up to 5961, 6106, 6164, 6298)

 Many many references to IEEE
● 802.11/802.15.4 for all the wireless
● 1394/1212/1284 for firewire/SCSI/parallel
● 754 floating point arithmetic

 ISO standards:
● CD filesystems, character sets, networking

 ...



Why should I care ?

 Sometimes you won't have the choice:
● Interoperability is crucial
● New hardware is coming

 Sometimes you have the choice:
● Which standard(s) to implement
● Finding relevant standards can be challenging
● You may not like it, make sure you don't exclude it by 

design
 Sometimes you want to be involved:

● It may still be time to fix it !
● They may need your implementation to finish
● Providing test case and suites helps interop



Standard and Software in parallel

Standard

Software

 Parallel developments
● Same deadline
● Reference code

 Good points:
● Feedback
● Timing is good
● Positive perception

 Bad point:
● What if the standard doesn't pass
● Frequent changes to the code as the draft evolves

That situation is not very common



Late implementor

Standard
Software

 React upon demand
● Existing need
● Spec looks okay

 Good points:
● Spec is stable

Existing User base
● Minimal effort
● Benefit from earlier implementor efforts

 Bad points:

Too late to change the specification
● Competing with existing implementations

That situation is very common, usually the easiest 



Early implementor

Standard
Software

 Standardize existing code base(s)
● Software works
● Build a standard

 Good points:
● Clear direction

Existing User base
 Bad points:

Existing user base
● The specification will change, your code too
● Competing with other people on the standard choices

That happens, this can be hell 



Open Source specific

 Our code is public, are the standards (or drafts) too ?
 Do we have the resources to implement the spec fully ?
 Collaboration with the Working Group can be great:

● Feedback loop integrate the Open Source Process
● Who pays for the membership fees ?
● Can be very time consuming

 One very hard issue : Patents
● Affects us harder than proprietary code
● Different standard bodies approaches

● Royalties free (W3C)
● RAND (Reasonable non discriminatory)

● Workarounds are not always possible



Conclusions

 A lot of standards impact Open Source projects
● Don't ignore them, be ready
● Sometimes it is worth contributing
● Be careful in your implementation

● Interop is important
● Avoid legal issues

 Some standard body are friendly to OSS
● Free 'expert' access
● Legal provisions to avoid patent issues

http://veillard.com/Talks/CLKBeijing2012.pdf


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

